附件:公示内容(应包括如下方面)

- 一、推荐中华医学科技奖医学科学技术奖、卫生管理奖、医学科学技术 普及奖、青年科技奖候选项目:
 - 1. 推荐奖种: 医学科学技术奖
 - 2. 项目名称:蛛网膜下腔出血后脑损伤的发病机制及干预研究
 - 3. 推荐单位: 江苏省医学会
- 4. 推荐意见:蛛网膜下腔出血(SAH)是一类常见的出血性脑卒中,多由颅内动脉瘤破裂所致,具有高致死率和致残率等特点,其主要原因难以控制的颅内压增高和继发性脑损伤,目前亟需完善SAH 的基础理论,并寻找有效的干预靶点与处理对策,促进相关临床转化,减轻SAH 后的脑损伤,改善预后。本项目在国家自然科学基金和江苏省自然科学基金等资助下,针对SAH 后脑损伤模式(早期脑损伤和迟发性脑缺血),开展了一系列基础与临床研究,揭示了损害相关分子模式(DAMP)型脑炎性 损害和氧化应激型脑损害的机制及分子网络,阐明了迟发性脑缺血的病理 Th 理机制,构建了以临床功能评分、Th 物标志物、神经影像评估等三位一体的全程临床监测及 预警体系,提出了分子干预靶点并进行临床转化,建立并完善了SAH 的综合临床干预措施。

本项目得到 8 项国家自然科学基金、3 项江苏省自然科学基金和 1 项南京市杰出青年项目等课题资助,共发表学术论文 90 篇,其中 SCI 论文 47 篇,2 篇论文分别被选为 Journal of Neuroinflammation 和 Brain Research 当期杂志封面文章,10 篇代表性论文被 Web of Science 引用 344 篇次,其中他引 301 篇次。获实用新型专利 1 项。本单位近 5 年临床救治 SAH 逾 2500 例,通过改善救治流程和实施有效干预,成功率达到 95%左右,明显改善 SAH 的预后,平均住院时间缩短 3 天以上。相关成果在其他大型综合性医院推广应用,取得明显社会和经济效益。

我已认真审核项目填报各项内容,确保材料真实有效,经项目完成人所 在单位公示无异议,推荐其申报 2022 年中华医学科技奖。 5. 项目简介:蛛网膜下腔出血(SAH)是一类常见的出血型脑卒中,具有高致死率和致残率等特点,而外科治疗技术的进步未能有效改善SAH 预后,目前亟需完善SAH 的基础理论,寻找有效的干预靶点与处理对策,促进相关临床转化。本项目在国家自然基金与江苏省自然科学基金等课题资助下,针对SAH 后脑损伤模式(早期脑损伤和迟发性脑缺血)进行了系列基础与临床研究,取得以下成果:

1. 揭示 SAH 后早期脑损伤 (EBI) 发病机制及其信号转导网络

既往的 SAH 基础理论不能完全解释 SAH 后的临床表现与病程进展,本项目明确了氧合血红蛋白作为主要损伤因子,触发氧化应激、炎性反应及神经元凋亡, 启动早期脑损伤;通过系列研究揭示了损害相关分子模式 (DAMP)型脑炎性损害和氧化应激性脑损害机制及其分子网络,并筛选出关键干预靶点。

2. 完善迟发性脑缺血(DCI)的病因学及其临床评估

我们研究中发现,脑血管痉挛并不是导致 DCI 的唯一原因,同时存在脑炎性损害、微循环障碍、线粒体代谢障碍等因素。结合 Th 物标志物及影像学检查,建立了 DCI 综合预警模型,能够更早、更有效地对 DCI 进行防治,完善了治疗策略, 明显提高患者 Th 存质量。

3. 构建三位一体的 SAH 后全程监测及预警体系

SAH 患者病情复杂多变,我们根据临床功能评分、Th 物标志物、神经影像评估"三位一体",构建了 SAH 后贯穿早期脑损伤(EBI)和延迟性脑缺血(DCI) 的全程监测及预警体系。通过综合评估并采取及时有效的针对性干预措施,降低了 SAH 后并发症的发 Th 率,缩短了住院时间,有效改善患者预后。

4. 促进基础理论转化,建立 SAH 临床综合干预措施

本项目以基础研究为先导,以临床干预为目的,构建 SAH 后的综合治疗体系。从基础研究出发,分别以虾青素和脱氢表雄酮调控小胶质细胞介导的神经炎症,以 过氧化物氧化还原酶 2 为靶点缓解氧化应激,开展临床转化

研究。通过研究发现, 在 SAH 早期,及时清除血肿与血性脑脊液引流可减轻血红蛋白所致的脑损伤,辅以抗炎、抑制氧化应激等措施,具有良好的临床效果。

本项目在 8 项国自然科学基金、3 项江苏省自然科学基金、1 项南京市杰出青年项目等资助下,对 SAH 进行了全程、多方位预警和损伤控制网络研究,进一步完善了 SAH 的脑损伤机制,为 SAH 后脑损伤的治疗提供了新的策略和思路, 具有重要的科学价值和临床应用前景。本项目共发表学术论文90 篇,其中 SCI 论 文 47 篇,CSCD 论 文 43 篇。2 篇 论 文 分 别 被选 作 为 Journal of Neuroinflammation 和 Brain Research 当期杂志封面文章,获得实用新型专利 1 项。10 篇代表性论文被 Web of Science引用 344 篇次,其中他引 301 篇次。研究成果在国际神经外科及专题大会交流 3 次,参与编写《2015 年重症动脉瘤性蛛网膜下腔出血管理专家共识》,举办全国性颅内动脉瘤与 SAH 相关学术会议 5 次。本单位近 5 年临床救治SAH 逾 2500 例,通过改善救治流程和实施有效干预,成功率达到 95%,明显改善 SAH 的预后,平均住院时间缩短 3 天以上。相关成果在 1 家大型综合性医院推广。

6. 知识产权证明目录:

序号	类别	国别	授权号	授权时间	知识产权具体名称	发明人
1	中国实用新型专	中国	5872561	201 7- 01- 18	一种可调控 可测压简易 脑脊液收集 装置	刘景鹏; 杭 春华; 庄宗 叶振南; 吕 盛银; 张翔 圣; 程伟

7. 代表性论文目录:

序号	论文名称	刊名	年,卷 (期) 及页码	影响因子	通讯作 者(含 共同)	SCI 他引 次数	他引 总次 数	通讯作者 单位是否 含国外单 位
1	Peroxiredoxin 2	Ј	2 0 1	8.3	杭春华,		41	否
	activates	Neuroinf	8 M a	22	李伟			
	microglia by	lammatio	r 1 9					
	interacting wi	n	; 1 5					
	生 Toll-like		(1)					
	receptor 4 after							
	subarachnoid							

	hemorrhage						
2	Cerebroprotecti on by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1- dependent pathways	Free Radic Biol Med	2 0 1 8 A u g 2 0 ; 1 2 4 : 5 0 4 - 5 1 6	7. 3 76	杭春华, 李伟	38	否
3	Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway	Faseb j	2 0 1 9 Ja n; 3 3 (1) :72 2 -73	5. 1 91	杭春华,	32	否
4	DHEA Attenuates Microglial Activation via Induction of JMJD3 in Experimental Subarachnoid Haemorrhage	J Neuroinf lammatio n	2 0 1 9 N o v 2 8;1 6 (1):2	8. 3 22	杭春华, 李伟	14	否

			2 0 1					否	
	Peroxiredoxin		9 F e						
	1/2 protects			b ; 3					
	brain against			3					
5	H2O2-induced	Faseb j	(2)	5. 3	杭春华,		15		
	apoptosis after	rasen j	: 3 0	91	李伟				
	subarachnoid			5 1 -					
	hemorrhage			3 0 6					
			2						
6	Roles of	Front	2 0 1	5. 6	史继新,		41	否	

	Dannawi- 1						
	Pannexin-1						
	Channels in						
	Inflammatory						
	Response						
	through the						
	TLRs/NF-Kappa B		7 J u				
	Signaling	Mo1	n 6 ;				
	Pathway	Neurosci	10:	39	杭春华		
	Following	110d10501	1 7 5				
	Experimental						
	Subarachnoid						
	Hemorrhage in						
	Rats						
	Resveratrol						否
	Attenuates						
	Early Brain						
	Injury after		2 0 1				
	Experimental						
	Subarachnoid	Front	7 N o	4.6	 杭春华,		
7	Hemorrhage via	Neurosci	v 3 ;	77	张鑫	46	
	Inhibition of	1,0410501	1 1 :	''	2 N. MAIC		
	NLRP3		6 1 1				
	Inflammasome						
	Activation						
	Curcumin						否
	Mitigates						
	Neuroinflammati						
	on by Modulating						
	Microglia						
	Polarization						
	through		2 0 1				
	Inhibiting TLR4		9 N o				
	Axis Signaling	Front	v 1	4.6	机春华,	20	
8	Pathway	Neurosci	5 ; 1	77	李伟	30	
	Following		3 : 1				
	Experimental		2 2 3				
					<u> </u>		

	Subarachnoid						
	Hemorrhage						
9	Akt Specific	ACS Chem	2 0 1	4.4	杭春华,	27	否
	Activator SC79	Neurosci	6 J u	18	李宽钰		
	Protects		n 1				
	Against Early		5 ; 7				

	Brain Injury Following Subarachnoid Hemorrhage		(6) : 7 1 0 - 8				
10	Inhibition of the Receptor for Advanced Glycation End- Products (RAGE) Attenuates Neuroinflammati on While Sensitizing Cortical Neurons Towards Dea 生 in Experimental Subarachnoid Hemorrhage	Mol Neurobio 1	2 0 1 7 Ja n; 5 4 (1) :75 5 -76 7	5. 5 9	杭春华	17	否

8. 完成人情况,包括姓名、排名、职称、行政职务、工作单位、 对本项目的贡献

姓名: 杭春华

排名: 1

职称: 主任医师, 教授

行政职务: 科主任

工作单位:南京大学医学院附属鼓楼医院

对本项目的贡献:总体负责项目设计、规划、实施和总结。在基础理论研究中,指导研究团队提出研究假说,构建了揭示了以损害相关分子模式型脑炎性损害的机制及分子网络,阐明了迟发性脑缺血的病理 Th 理机制;在临床工作中,提出了以临床功能评分、Th 物标志物、神经影像评估等三位一体的全程监测及预警模型,建立并完善了 SAH 的综合临床干预措施。在项目期间获得国家自然科学基金 3 项,江苏省自然科学基金 2 项,系代表性论文 1、2、3、4、5、6、7、8、9、10 通讯作者。

姓名: 李伟

排名: 2

职称:副主任医师

行政职务: 科主任助理

工作单位:南京大学医学院附属鼓楼医院

对本项目的贡献:一直致力于 SAH 后脑损伤相关机制及治疗靶点的研究,参与本项目的具体规划与实施。分别从神经元保护及小胶质细胞调控两个方面阐述了 SAH 后 EBI 的损伤机制及干预方向;此外,结合神经影像及 Th 物标志物筛选,构建了 DCI 防治新体系。在项目期间获得国家自然科学基金 2 项、南京市杰青1 项。系代表性论文 1、4、5、8、共同通讯,参与代表性论文 3、7、9。

姓名: 庄宗

排名: 3

职称:副主任医师

行政职务:无

工作单位:南京大学医学院附属鼓楼医院

对本项目的贡献: 自博士研究 Th 期间至今一直致力于 SAH 后继发性脑损伤相关机制及治疗靶点的研究,参与本项目实验内容的具体实施,包括动物模型建立、实验标本收集及部分指标的检测、观察。发现神经元氧化应激反应参与 SAH 后继发性脑损伤,并论证抑制过度的氧化应激反应可缓解 SAH 后神经元损伤情况。参与代表性论文4、6、8、9。

姓名: 鲁悦

排名: 4

职称: 主治医师

行政职务:无

工作单位:南京大学医学院附属鼓楼医院

对本项目的贡献:围绕 SAH 后 DAMP 型脑炎性反应的主要学术思想,创新性地发现过氧化物还原酶 2 (Prx2)在细胞内与细胞外的不同作用。SAH 后细胞内的 Prx2 可以清除氧自由基,起到抑制氧化应激的作用,保护神经元。但被释放到细胞外的 Prx2 是一种 DAMP,

可以通过 TLR4 激活小胶质细胞,加重炎性反应。这种"双刃剑"作用是既往研究尚未发现的,拓展了 DAMP 型炎性反应的机制解释。系代表性论 1、5 第一作者,代表性论文 2、3 共同第一作者,参与代表性论文 4、7、8。

姓名: 张顶顶

排名: 5

职称: 主治医师

行政职务:无

工作单位:南京大学医学院附属鼓楼医院

对本项目的贡献:针对 SAH 患者的预后,创新性地发现: SAH 患者入院血清葡萄糖/磷酸比值与动脉瘤性蛛网膜下腔出血严重程度及预后具有相关性,是一种潜 在的 Th 物标志物,可以反映 SAH 患者的疾病严重程度和预后。系 9 的第一作者,参与代表性论文 8。

姓名: 高永月

排名:6

职称: 医师

行政职务:无

工作单位: 南京大学医学院附属鼓楼医院

对本项目的贡献:一直致力于 SAH 后小胶质细胞介导炎性反应的机制及调控靶点的研究,参与部分项目的具体实施以及技术指导,包

括部分项目动物模型建立、实验指标观察,研究结果发现小胶质细胞介导神经炎症是 SAH 后神经损伤的重要原因,并论证了通过Curcumin 调节小胶质细胞激活状态的可行性。为本项目代表性论文 8 的第一作者,参与代表性论文 1、4、5、6、8。

姓名: 闫惠颖

排名: 7

行政职务:无

工作单位:南京大学医学院附属鼓楼医院

对本项目的贡献: 致力于 SAH 后继发性脑损伤相关机制及治疗靶点的研究,参与本项目实验内容的具体实施,包括动物模型建立、实验标本收集及部分指标的检测、观察。发现 MyD88-Nf- κ B 炎性反应通路参与 SAH 后继发性脑损伤,并论证了抑制 Myd88 在 SAH 后的神经保护作用。参与代表性论文 9。

9. 完成单位情况,包括单位名称、排名,对本项目的贡献单位名称:南京大学医学院附属鼓楼医院

排名: 1

对本项目的贡献:项目申请人团队所在的南京大学医学院附属鼓楼 医院神经外科是 江苏省临床医学重点专科、江苏省"科教强卫"重点 学科、国家示范高级卒中中心、 江苏省脑血管疾病诊疗中心、南京 市临床医学重点专科、国家卫健委住院医师规范 化培训基地、全国

首批神经外科专科医师规范化培训基地、国家卫健委神经重症培训基地、江苏省神经外科专科护士培训基地,是南京大学等院校硕、博士研究 Th 培养基地,博士后流动工作站。展开床位 205 张,具有独立的神经重症监护室,建立了重型脑血管病诊治的绿色通道,与相关的科室包括急诊科、影像科、神经内科、康复科密切合作,能够完善急诊头颅 CT、MRI 检查,为本项目临床研究提供了保证。项目主持人所在单位拥有完善的研究条件,对研究全过程,包括实验动物、实验方法、检测技术、数据准确性以及论文科学性进行监督和评估,从而保证了研究成果具有较高的科学性和创新性。同时,南京大学医学院附属鼓楼医院对研究生的培养提供了大力支持,项目开展期间共培养博士研究生 10 名,硕士研究生8名,为项目的具体实施提供了人力资源支持,保证了本项目的预利完成。